Solving Simultaneous Equations with Matrix Mathematics

Given a set of three equations with three unknowns, we could solve for the unknowns through a process of substitution and elimination using algebra. For situations with a small number of simultaneous equations, we can also use matrix mathematics to solve for the unknowns.

Consider the following system of equations:

$$
\begin{gathered}
4 x+y-z=10 \\
-x+3 y+2 z=4 \\
x-y-z=-1
\end{gathered}
$$

This system can be represented by three matrices
$A=\left[\begin{array}{ccc}4 & 1 & -1 \\ -1 & 3 & 2 \\ 1 & -1 & -1\end{array}\right] \quad X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \quad B=\left[\begin{array}{c}10 \\ 4 \\ -1\end{array}\right]$

We can then write the system of equations:
$A X=B$

We know from matrix mathematics that a matrix times its inverse yields the identify matrix:
$A^{-1} A=1$

Multiplying both sides of the system by A^{-1} we get:
$A^{-1} A X=A^{-1} B$ or $X=A^{-1} B$

Use the matrix inverse function inv in MATLAB or the numpy.linalg.inv or scipy.linalg.inv in Python to solve this system of equations using this approach.

